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S U M M A R Y  
Two theorems are proved by which the "other bound" can be obtained from the Rayleigh quotient, i.e., the bound 
which cannot be obtained by the Rayleigh Ritz method. 

The method presented here utilizes a "shift operation" which is the redistribution of weight functions in the Rayleigh 
quotient. 

1. Introduction 

One of the most powerful tools in the calculation of eigenvalues is the Rayleigh-Ritz method. 
A more elaborate one is the Galerkin method, which is based on the same philosophy as the 
Rayleigh-Ritz method. A drawback of both methods is that they supply just one bound: 
An upper bound for minimum formulation and a lower bound for maximum variational 
formulation. 

Attempts were made to obtain the "other" bound. The Weinstein method can be applied in 
some cases. A method which yields the "other bound" is given in Ref. [ i ]  ; however, this method 
yields a bound which is not close to the correct value. A systematic approach for a particular 
set of problems is given in Ref. [2], which is a particular case of the Denominator  Shift theorem 
proved in this work. 

The contribution of this work is the extension and generalization of the method of Ref. [21 . 
This work shows how to obtain lower bounds to eigenvalues for a more general class of 
problems: The considered operators are more general and may appear in both numerator and 
denominator of the variational formulations. 

2. Analysis 

Let an eigenvalue problem have a variational formulation 

with a set of boundary conditions, dr, of course, is of the same dimensions as D. A and B are 
operators, having the general form 

B(f)--~fljbj(f) J (2) 
J 

where ai and bi are operators, and ~i and fii are given functions. 
The solution of Eq. (1) is f>  
Without loss of generality both numerator and denominator in Eq. (1) are assumed positive. 
Let a shift operation be defined: Two functions ~b and ~ are the shift of each other if: 

fDdpdv = fD~dV. (3) 
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A result of Eq. (3) is 

D=D+D 
4 > ~ i n 5  
~ b < 0 i n D  

f~ (~- r = 

1 
fo / (4) 

Let new notations be introduced in Eq. (2): One of the terms in both A and B is considered 
particularly, and its subscript is dropped; also, new Operators, G and H, are defined: 

A(f) = ~ ~iai(f)+~a(f) + uia~{f) 
i=1 i = k + l  

l - 1  

B(f) = 2 fljbj(f)+flb(f) + ~ fljbj(f) 
J ~  J='+'  (5) 

A(f) = G(f)+~a(f) 
B(f) = H(f)+flb(f). 

3. The Denominator Shift Theorem 

(This theorem is a generalization of a theorem given in Ref. [2], where H ( f )=  0), Let fl and b 
be the shift of each other: 

D = 5 + D  
f i > S i n D  

f l < S i n D  / 

f (fl-a)dv= .I (6-fl)dv>O. 

Let the maximum of b(fl) in D be 5, and the minimum of b(fl) in D be b, i.e., 

5 > b(ft) in /9  
b_ < b(fl) in D. 

Let another eigenvalue problem be (see Eq. (5)) 

#2 = rain I fo A (f)dv / iv [H (f) + fb(f) ] dv} 

with the same boundary conditions as Eq. (1). Now, if 

b > b  

then, Theorem : 
#2 < 22 

Proof: 

= f~ [H(f,)+ab(fl)]av + ig (fi-a)b(yt)dv 

< f [H(f,)+6b(fl)]dv+bf (fi-6)dv. 
= 5 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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B ( f l ) d v  = fD In(A)  + fib(A)] = dv 

= .fp[H(fl)+6b(fl)]dv- ~(5-fi)b(f,)dv 

f f _D _D 

Addition of Eq. (11) and Eq. (12) yield 

fD B(f,)dv < fD [H(f~)+Sb(fl)]dv-(b-b) f~ (fl-~$)dv 

f. [H(f')+ab(fl)]dv " 
From Eqs. (1) and (8): 

22 = min{ fDA(f)dv /fDB(f)dv }= 

={ foA(fl)dV/iDB(fl)dV } 

< { fDA(fa)dV /fD[H(fl)+bb(fl)]dv } 

< min{f ~ [H(f)+ab(f)]dv }= #2 Q.E.D. 

4. The Numerator Shift Theorem 

Let ~ and ~ be the shift of each other" 

fD~dV= fDydv 
D=D+D 
e > 7  in /) 

c~< 7 in D 

f~ (~- ~)dv = f~(7-~)dv>0"  

Let the minimum of a(fl) in/~ be fi, and the maximum of a(fl) in _D be _a, i.e., 

< a ( f l ) in  
a > a(fl) in _D. 

Let another eigenvalue problem be (see Eq. (5)) 

v2= min {fo [G(f)+ya(f)Jdv I/.ID B(f)dv} 
with the same boundary conditions as Eq. (1). Now, if  

a > a  

then, Theorem : 
1J 2 < 2 2 
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(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Proof: 

f A(f,)dv = f ~ [o(f,)+~a(L)]d~ : 

- -  + 

) i~[O(f,)-l-Ta(f,)]dv+{x f (e-7)dv. (19) 

f D A(fl)dV = fg [G(fx)+ea(fl)]dv = 

>>-f (20) p 
Addition of Eq. (19) and Eq. (20) yields 

fo >-- fo 
>-= t [G(f,)+Ta(fa)]dv" (21) 

3 D 

From Eq. (1) and Eq. (16) 

>min {[ [G(f)+Ta(f)]dv / fDB( f )dv}=v2 Q.E.D. (22) 

5. Corollaries 

1. Both numerator and denominator shifts may be used simultaneously, with different divisions 
of D into b and _D, for each shift. 

2. Several shifts may be used in the denominator, with different division of D into D and __D 
for each shift and each term in E [3iai(f). 

3. Several shifts may be used in the numerator, with different division of D into D and D for 
each shift and each term in Z/3iai(f). 

4. The functions 7 and 6 need only to be continuous by parts and integrable. 

The practical use of the theorems consists of the following steps" 
(a) Identification of the general character of the solution in the sense of Eq. (9) and Eq.. (17), 

e.g., that the solution or the relevant part of the operator is larger in certain known sub- 
regions than in another subregion (see argument leading to Eq. (26) in the numerical ex- 
ample). 

(b) The invention of a new function (7, 8 in theorems, S 2 in the numerical example), such that 
the resulting Euler-Lagrange equation is easily and exactly solved. 

(c) Scaling of the new weight function to be the shift of the old one (see Eq. (26)). 
Once these steps are followed the sought bound is directly obtained. 
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6. Numerical Example 

This example is artificially constructed to demonstrate the use of  the theorems. 
Consider a string of variable mass: Eq. (23): 

y"+ 2(l+ x2)y = o 
(23) 

J y = 0  at x=_+rc /2 .  

The equivalent variational formulation is 

22 = min (y')2dx (1 +exZ)y2dx (24) 
I O - n / 2  . ) -~/2  

By the standard Rayleigh-Ritz method, assuming y = cos x 

re/2 1 
22 < re/2 + ~ (rc3/24- ~/4) = 1 + a (rt2/12- �89 (25) 

Clearly, y has its maximum at x = 0 and decreases monotonously toward x = +__ re/2. Therefore, 
the condition of Eq. (7) is satisfied by shifting the weight function {1 + ax z) toward smaller 
x-values. Denote 

$2 1 f ~/2 ~z 2 - (l+~x2)dx= 1+~ ~ .  
:g - r # 2  

The shifted* problem, in a variational formulation is 

A 2 =  min (y')Zdx/~l_~/zSZyZdx 
~ d-n /2  

with the Euler-Lagrange equation 

y" + A2S2y = 0 

and with the solution 

y = cos (ASx), A = 1/S. 

Thus, by the denominator shift theorem 
7.c2~ - 1 

22 ~ l + g  ~ /  . 

Thus, from Eqs. (25) and (30) 

+ e  - ~ > 22 > +e  i 2  

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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* The  region D : - •/2 < x < n/2, is divided into ~ :  ( - 7z/2 < x < - ~/2x/3 , n/2x/3 < x < n/2) where (1 + ax 2) > S 2, and  
into D : - rc/2x/3 < x < =/2~/3 where  1 + gx 2 < S 2. 
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